Ventilatie, zonwering en airco: wanneer gebruik je wat?

Opeens is het zomer. Na (gevoelsmatig zeker) de maandenlange regenperiode is het eindelijk droog geworden, en daarbij ook meteen warm. Huize Geldsnor staat op één van de warmste plekjes van Nederland, in het zuidoosten. We wonen in een klein dorpje nabij de Duitse grens. Letterlijk kan ik Duitsland zien liggen vanuit mijn kantoor (op zolder).

Maar goed, het is dus warm. En hoewel ik érg hou van hitte, kou, regen, sneeuw en storm, heb ik ons huis volledig voorzien van airconditioning. Die gebruiken we sporadisch, althans om te koelen. Er zijn immers meer manieren om je huis af te koelen. Zo is er zonwering, ventilatie en dus de airco. Wanneer gebruik je nu wat?

Comforttemperatuur (en vochtigheid)

De eerste parameter is feitelijk de comforttemperatuur. Wat vind jij prettig? Als je 28C prima te doen vind (als binnentemperatuur, inclusief om in te slapen), dan hoef je niet veel meer te doen dan een raampje open. Als je 22C wilt handhaven, dan is het al een stukje lastiger.

Wij vinden 25C in de zomer beneden acceptabel. Op de bovenverdieping is 22C acceptabel om in te slapen. Op kantoor koel ik tot 23C, maar mag het sporadisch warmer zijn.

Onderstaand is een schematische weergave van onze woning. Alle temperaturen zijn gemeten op 3 juni 2021, om 08:45. Op zolder was het 24.2C, op onze slaapkamer 22.5C, woonkamer 21.5C en de keuken 23.7C. De buitentemperatuur was 21.0C. Door de relatief hoge luchtvochtigheid voelt het al vrij snel klam aan.

Huize Geldsnor, de achtergevel. De blauwe vierkantjes zijn de airco-units en de temperaturen zijn geplot op de afbeelding. Nu is het nog koel en kunnen de tuindeuren open.
Achtergevel van Huize Geldsnor. De achtergevel is gericht op het westen. De buitentemperatuur was op dit moment 21.0C, bij een relatieve luchtvochtigheid van 70%.

Hoe komt warmte het huis in en wat kun je er tegen doen?

Warmte komt op verschillende manier naar binnen. Zo is er conductie, convectie en radiatie (straling).
Conductie wil zeggen dat er géén directe warmte-uitwisseling is: de muur wordt warm, en door het opwarmen van de muur gaat op een gegeven moment ook de binnenmuur warm worden: de warmte “slaat door” naar binnen. Dit kun je beperken door te isoleren: het werkt exact hetzelfde als bij kou. Door een barrierelaag van bijvoorbeeld steenwol of glaswol wordt de warmte veel minder goed doorgegeven en breek je de conductie.
Convectie is de warmteoverdracht door een “fluidum”. Dit is een gas of vloeistof. In het geval van het opwarmen van je huis gaat het om gassen: lucht. De koude lucht uit je huis stroomt weg (aan de onderkant) en wordt vervangen door warmere lucht van buiten. Tenzij de buitentemperatuur lager is: dan stroomt de warme lucht weg uit het huis en zuig je koelere lucht aan. Dit bereik je door te ventileren. Dit kan zowel gedwongen convectie zijn als vrije convectie: gedwongen met bijvoorbeeld een ventilator of mechanische afzuiging. Of vrij door ramen en deuren (tegen elkaar) open te zetten.
Straling/radiatie: de warmteoverdracht door straling. De meeste mensen denken dat dit beperkt is tot infrarood. Echter, dat is een misvatting. Ongeveer 44% van de energie in zonlicht bevindt zich in het zichtbare spectrum, 53% in IR en 3% in UV. Nu is de “grap” dat ieder object straalt in het infrarood-spectrum.
En hoe warmer het wordt, des te meer straling er vanaf komt. Denk aan warme radiatoren (70C), of een bepaalde oppervlakte van materiaal. Hoe warmer het wordt, des te sterker de straling: daarmee koelt het object ook weer af. De kleur doet er niet toe: infrarood wordt geabsorbeerd door het materiaal en niet door de kleur. Dat een zwart oppervlak warmer wordt komt omdat al het zichtbare licht wordt geabsorbeerd; niet omdat er meer IR wordt geabsorbeerd.
Dit object zal wel meer IR uitstralen. En daar komen we in moderne huizen met een uitdaging: ze zijn voorzien van HR++ glas. In de winter een groot voordeel, in de zomer een groot nadeel. HR++ glas reflecteert gedeeltelijk de IR-straling. En daar zit een deel van het probleem: dit geldt beide kanten op. De warmte die in je huis zit, gaat er daardoor ook niet zo makkelijk meer uit zo lang als dat het HR++ glas er voor zit. Straling beperk je door te voorkomen dat er licht naar binnen komt.

Radiatie: zonwering

Zoals gezegd hierboven voorkom je opwarming door straling door te voorkomen dat het binnenkomt. En dat kan op verschillende manieren. De meeste mensen denken meteen aan oplossingen als schaduwdoeken, rolluiken (zorgen wel voor hitte-doorslag) en andere “mechanische” zonwering. Dit werkt, maar is natuurlijk wat vatbaar voor weersinvloeden. Er zijn ook passieve methodes mogelijk: bomen of bij het ontwerp van de woning hier al rekening mee houden. Je ziet hier een voorbeeld van de zonnehoek op de 21e van iedere maand voor mijn locatie (bij benadering), op het hoogtepunt van de dag:

Zonwering, airco of het raam open? Dit hangt mede af van de "overstek" van het dak ten opzichte van de ramen en de hoek van de zon. Hier een plaatje met de overstek van Huize Geldsnor en de hoek van de zon.
Instraling van de zon op de 21e van een maand, hoogtepunt van de dag

Als de overstek groter is, dan voorkom je tijdens de zomer dat er (teveel) direct zonlicht op de ramen valt. In de winter geniet je nog altijd van de zon die wel naar binnen valt, omdat de hoek kleiner is. Feitelijk is een zonwering van doek niets anders dan een grotere overstek.

Het belangrijkste aan zonwering is dat deze extern moet zijn. Het dichtdoen van gordijnen heeft geen enkele zin voor de warmteoverdracht. De warmte is immers al binnen in het huis en zal zich daar verspreiden: in dit geval middels convectie. De lucht rondom de gordijnen warmt op en verspreidt zich. Het dichtdoen van gordijnen voorkomt wél dat je wordt blootgesteld aan de directe straling (“direct heat exposure”) en draagt dus wel bij aan het gevoel van comfort.

Conductie: beperking van de warmte-doorslag

Conductie is eigenlijk op dezelfde manier op te lossen als het voorkomen van straling. Behalve dat je geen mechanische zonwering voor je huis zult plaatsen. Maar een muur die in de schaduw ligt zal geen warmte opnemen, of toch in ieder geval veel minder. Een muur in de schaduw wordt zo warm als zijn omgeving: bij 30C dus 30C. In de volle zon kan deze wel 60C warm worden. Een boom op een strategische plaats kan dus voor aardig wat verkoeling zorgen, simpelweg omdat de muur niet zo heet wordt. Maar ik geef toe: dit vereist nogal wat planning…Een goede methode is ook klimop te gebruiken, maar daar moet je van houden. Op mijn huis komt geen klimop (of welke andere klimplant dan ook…).

Convectie: ventileren

Ah, nu komen we ergens: ventileren. Algemeen kun je stellen: als de buitentemperatuur lager is dan de binnentemperatuur is het nuttig en zinvol om de ramen open te zetten. Immers, als de buitentemperatuur hoger is, zal het niet afkoelen in huis. Dat is dan ook het moment waarop je het raam dicht moet doen. Als het een raam is welke gelegen is op de zon, dan is het nuttig om eerder het raam dicht te doen. De muur rondom het raam zal namelijk aanzienlijk warmer zijn dan de buitenlucht en op die manier krijg je de warmte alsnog eerder in huis.

Zo gaan we aardig richting nachtventilatie. Veel moderne ventilatie-installaties zijn voorzien van een nachtventilatie stand. Niet allemaal, helaas. Het systeem weet dat het buiten kouder is dan binnen, en zal op dat moment meer (relatief) koele lucht van buiten aanzuigen en de warme lucht afvoeren. Als je niet zo’n installatie hebt, zoals ik, dan moet je het doen met het openen van ramen en/of het handmatig aanzetten van de ventilatie (afzuigkap & badkamer). Eventueel met ondersteuning van een ventilator.

Als ventileren niet meer helpt: airco

Airconditioning werkt als een omgekeerde warmtepomp. Er wordt warmte (en vocht, indien gewenst) onttrokken aan de lucht en deze wordt gekoeld in de warmte-wisselaar buiten. Dit werkt dankzij het uitzetten en comprimeren van gassen. Des te groter het temperatuurverschil, des te effectiever het proces is. Een woning die reeds 30C warm is proberen te koelen met een buitentemperatuur van 35C is uiteraard mogelijk, maar minder efficiënt. Het zal wellicht net zo snel gaan, maar veel meer vermogen kosten. Dit komt door 2 redenen: ten eerste is de warmteuitwisseling minder efficiënt. In de buitenunit moet het gas namelijk weer gecomprimeerd worden, zodat het als vloeistof in de binnenunit terecht komt. Hier neemt het warmte op en wordt daarbij weer een gas. Dit pomp je naar buiten, en daar begint de cyclus opnieuw. Als je het omdraait heb je verwarming. Maar je snapt dat een lagere buitentemperatuur gunstiger is voor de efficiëntie van je airco.

Het meest effectief is dus voorkomen dat het huis opwarmt en te zorgen dat je vanaf het moment dat de gewenste binnentemperatuur gelijk of hoger is dan de buitentemperatuur je de airco aan zet. Dit is efficiënter dan wachten tot in de avond om bijvoorbeeld de slaapkamer te koelen. Zo blijft de slaapkamer koel, en ook de muren, vloeren en plafonds. Door te voorkomen dat dit opwarmt kun je ook in de avond de airco uitzetten.
Maar stel je voor dat je dit niet doet. Je zet de airco in de avond aan: het is 30C op de slaapkamer en je wilt terugkoelen naar 22C. Dit bereik je, afhankelijk van je vermogen en grootte van de slaapkamer, wellicht in een uurtje. Misschien al wel eerder. Je hebt een groot vermogen gebruikt (want aan het begin van de avond is het warmste moment van de dag), en héél koude lucht moeten blazen om uberhaupt te kunnen koelen. Dit is oncomfortabel om in te slapen en maakt misschien nog wat geluid ook. Je zet de airco uit…En binnen een mum van tijd is de kamer weer aan het opwarmen richting de 30C. Ondanks dat de buitentemperatuur op dit moment lager is: de muren, vloeren en plafonds zitten vol met de warmte en hebben een grote massa. Deze zijn in dat uurtje NIET noemenswaardig afgekoeld. Ik kan het uitrekenen, maar ik neem aan dat de logica te volgen is: 1 kuub lucht weegt ongeveer 1.3kg. Mijn slaapkamer is 24m2 groot en 2.5 meter hoog en heeft als gevolg een inhoud van 60m3: 78kg. De vloer is van beton, met een dekvloer. 10cm dik, in totaal. Op een oppervlakte van 24m2 is dat 2.4 kuub beton, met een soortelijk gewicht van 2.3 ton per kuub: 5552kg. De muren hoef ik niet eens mee te rekenen, maar doe ik toch. Er staat 22 meter muur, van 2,5 meter hoog en 10cm dik. Dat is nog een keertje 5,5 kuub aan zware materialen (al is 1 muurtje slechts een stapel Ytong blokken).
Je snapt dat de 78kg lucht niet in verhouding staat tot de 10.000kg overige materialen in de slaapkamer. Die 10.000kg heeft een hoop warmte opgenomen en geeft die af aan zijn omgeving.

Je moet dus voorkomen dat het warm wordt in huis, en niet het symptoom gaan bestrijden. Dus: hou het zonlicht buiten, zorg voor goede isolatie en ventileer in de nacht en ochtend. Ook hiervoor geldt dat je lang moet ventileren, want de materialen van je huis geven heel veel warmte af (ons hele huis weegt > 100.000kg, alleen de vloer van de woonkamer al 23 ton). Deze thermische massa werkt natuurlijk ook in je voordeel: het duurt bij een zwaar huis ook een stuk langer voordat het opwarmt (in de zomer) of afkoelt (winter).

Welke airco is dan goed?

Het best werkt een split-unit airco. Deze heeft geen luchtafvoer, maar werkt met compressie. Losse airco’s, die met zo’n slang, ook wel een “mobiele airco” genoemd, hebben wel een luchtafvoer en pompen die lucht naar buiten via veelal ongeïsoleerde luchtkanalen. Daarmee komt een deel van de warmte weer terug naar binnen. Ook worden die slangen vaak plompverloren door een raam gehangen, wat het hele effect teniet doet. En als laatste: door het afzuigen van die lucht, zuig je ook warme lucht naar binnen. Het heeft daarmee een zeer klein netto effect.

Een split-unit airco is duurder, maar ook veel effectiever en efficiënter, met een veel hoger vermogen. Dit wordt gemeten in BTU’s (British Thermal Units). Een beetje losse airco heeft een vermogen van 9.000BTU. Mijn split-units hebben bij elkaar meer dan 30.000BTU vermogen. Wat kost dat dan? In mijn geval kostte het 4200 EUR, inclusief installatie, leidingwerk, buitenunits etc. Ongeveer het dubbele van mobiele airco’s, maar wel met een stuk grotere efficiëntie en comfort (meer functies).

Stresstest: verwarmen met de airco in een koudegolf

Al eerder (en regelmatig) schrijf ik over het verwarmen van ons huis met de airco. Korte opfrisser: ons huis is ~200m2 groot en de benedenverdieping wordt warm gehouden met vloerverwarming die op een conventionele (HR) ketel werkt. Dit wel op zeer lage temperatuur: 35C. In de bijkeuken hebben we een elektrisch kacheltje van 1500W om te voorkomen dat het daar te koud wordt. Niet omdat er niets is wat daar niet tegen kan, maar omdat te grote temperatuurverschillen in huis leiden tot tocht en daardoor voelt het ook elders kouder. Tevens hebben we airco op de benedenverdieping.

Op de bovenverdieping hebben we airco op onze slaapkamer (24m2) en de kinderslaapkamers zijn voorzien van 2 elektrische kachels van 2000W. De badkamer wordt op temperatuur gehouden met elektrische vloerverwarming (1000W) en een elektrische handdoek-radiator (1500W).

Al met al hebben we een enorme capaciteit aan elektrische verwarming voor het “geval dat”. Dit geval diende zich echter aan. Voor het eerst hebben we de elektrische kachels op de kinderkamers en in de bijkeuken aan gezet. Ook heb ik de vloerverwarming in de badkamer continu laten draaien ipv. op een tijdschakelaar. Dat niet zozeer vanwege de kou, maar omdat onze badkamer tijden met de komst van onze jongste dochter minder voorspelbaar zijn en warmte met zo’n kleintje belangrijker is.

Verwarmen doen wij ook gedeeltelijk op de airco: dit is feitelijk een warmtepomp die warmte uit de buitenlucht haalt en door compressie dit weer afgeeft aan de binnenruimte: het tegenovergestelde van een koelkast. Behalve in de zomer, dan is het precies zo als een koelkast. Dit proces is vele malen efficiënter dan verwarmen met “resistance heating” (conventionele elektrische kachels) of gas, omdat je alleen de elektriciteit er in stopt die nodig is om de pomp en compressor te laten draaien.

Dit scheelt honderden euro’s per jaar en werkt doorgaans fantastisch. Maar met lagere temperaturen neemt de efficiëntie behoorlijk af: er is minder warmte beschikbaar in de lucht, terwijl de warmtevraag van binnenuit groter wordt. Op zaterdag 6 februari kwam de kou er in. De wind draaide naar het oosten, de regen kwam vanuit het zuiden en ging over in sneeuw. De temperatuur kelderde: de gemiddelde temperatuur op zaterdag was nog 3.2C, maar op zondag was het gemiddelde -4.0C. Het bleef vriezen tot de 14e, pas op 15 februari kwam de gemiddelde etmaaltemperatuur weer boven nul.

De sneeuw was funest voor de airco en heb ik uitgezet op zondagochtend. De compressor was bedolven onder de sneeuw en er kon dus nergens nog warmte uitgetrokken worden: er was geen circulatie meer mogelijk. Op de plek waar de airco stond, langs het huis, was een grote sneeuwduin ontstaan van plaatselijk een meter diep. We zijn vanaf dat moment op onze slaapkamer gaan stoken met een elektrisch kacheltje vanaf het moment dat onze dochter geboren is. Daarvoor verwarmden we onze slaapkamer uiteraard niet. Door de sneeuw waren we ook beneden gedwongen om te verwarmen met gas: de airco kreeg het niet bijgestookt (door de sneeuw, maar anders had-ie het ook niet bijgehouden door de wind). Later in de week (vanaf de 13e) heb ik de sneeuw van de airco afgehaald en is deze weer aangezet om onze slaapkamer te verwarmen. Beneden hebben we het gehouden op gas.

Hieronder zie je ons energieverbruik in kwh & m3 per dag voor de maand t/m de 20e februari. In grijs loopt de lijn met de gemiddelde etmaaltemperatuur in graden Celsius. Je ziet dat op de 6e, de dag van de koude-inval ons elektraverbruik iets hoger is dan de donderdag en vrijdag ervoor. Maar vanaf de zondag zie je het “exploderen”. Tot de 14e iedere dag meer dan 40 kwh. Op deze schaal valt gasverbruik niet echt op: dit liep op tot 10 m3 op de 11e. De 11e is ook de dag dat mijn dochter geboren is. Er is de 10e en 11e aanzienlijk meer warm water verbruikt, de verwarming stond iets hoger en we hebben 3 dagen gewerkt met een elektrische kachel van 2KW op onze slaapkamer (omdat de airco onder de sneeuw lag). Vanaf toen begon ook de zon te schijnen, wat duidelijk te zien is in de opgewekte kwh’s!

Zelf werk ik het liefst met de totale energiebehoefte die we hebben in huis. Daarin heb ik ook het gas geconverteerd naar kwh’s. En dit weer teruggerekend naar verbruik per graaddag om het beter te kunnen vergelijken. De koude dagen zijn duidelijk terug te zien, maar met iets vertraging en later met invloed van de zon: 11, 12, 13 en 14 februari waren zéér zonnig en daardoor was de warmtebehoefte kleiner dan je zou verwachten op basis van de temperatuur. Overigens is onderstaand niet de eerlijkste vergelijking wellicht: dit is ons totale energieverbruik (exclusief auto’s) maar dus inclusief vaatwasser, droger en wasmachine. Met name die laatste 2 draaien veel door de komst van de baby: iedere dag werd het bed afgehaald, veel kleertjes, doekjes, dingetjes etc. in de was.

Je ziet ook duidelijk dat vóór de 6e de energievraag aanzienlijk kleiner was. Ik wijt dit aan het stoken met de airco en het niet aanpassen & gebruiken van elektrische kachels & elektrische vloerverwarming.

Let op de 2 verschillende assen: temperatuur op linker Y-as, kwh/graaddag op rechter Y-as.

Inmiddels is het buiten weer zacht. We stoken met de airco het huis weer warm. Dat gaat lekker: het is warm buiten (efficiënt), de zon schijnt (direct verbruik vanaf de PV-installatie) en er is weinig warmte-behoefte (= zuinig!).

De stresstest is dan ook wel goed geslaagd: zelfs onder de koudste temperaturen hou ik het huis warm met een lage aanvoertemperatuur (door de CV-ketel). Een aanvoertemperatuur die met een lucht-water warmtepomp makkelijk gerealiseerd had kunnen worden.

Je ziet ook duidelijk de besparing in m3/graaddag (=correctie voor weersinvloeden). De blauwe staafjes zijn voor het stookseizoen 2019-2020, de oranje staafjes voor 2020-2021, waarbij februari geldt t/m 20 februari.

Maar dit is een vertekend beeld: we hebben immers véél meer elektriciteit verbruikt. Dit is niet alleen vanwege de airco, maar met name vanwege de koudeperiode waarin we de elektrische verwarming nodig hadden die we nooit eerder gebruikten. De waarde die nu voor februari staat is een extrapolatie van de waardes (meterstanden gedeeld door 20, maal 28). Dit zal nog een stukje teruglopen vanwege het veel warmere weer waardoor het gemiddelde gedrukt wordt.

Om een eerlijke vergelijking te maken kijk ik naar het totale energievebruik, dus alles teruggerekend naar kwh. Hierin zit géén seizoenscorrectie, het zijn de absolute getallen:

Merk op dat er 2 grote verschillen zijn in de situatie: per 1 oktober 2020 stoken we warm met de airco wanneer het kan. En de felle koudegolf waarin ook mijn dochter geboren werd heeft een grote invloed. Desondanks is de totale hoeveelheid verbruikte energie áfgenomen!

Ergo: heeft u een airco die ook kan verwarmen? Schroom niet om deze in te zetten. Er wordt minder energie verbruikt (beter voor de wereld), en het bespaart geld. Win-win.

Verwarmen met airco: > 300 EUR per jaar besparen

Vanaf oktober ben ik zoveel mogelijk met de airco het huis warm gaan stoken. Dit werkt fantastisch – en het verdient een nieuwe update.

In de eerdere update gaf ik aan dat we in oktober 56kwh meer aan elektriciteit hebben verbruikt en 18m3 gas minder. November is een iets andere maand tot nu toe. We hebben 200kwh méér verbruikt dan in dezelfde periode vorig jaar. Een deel daarvan zal zijn omdat ik nu altijd thuis werk. Dit scheelt een paar kwh per dag, maar dat is ehct verwaarloosbaar. Ik gebruik dus de volledige 200kwh als “verwarming” in mijn aannames over wat ik bespaard heb. Eerder heb ik ook al uitgelegd hoe de graaddagen-methode werkt.

1 oktober t/m 23 november
Verbruik (verwarming)57,73m3
Per graaddag:0,11
Aantal gewogen graaddagen497
Per graaddag 2019 (1 okt-23/110,271
Besparing: 80,017m3
In EUR (0.7448EUR / m3)59,6
Extra elektra-verbruik200kwh
Kosten (0,226 EUR per kwh)45,2EUR
Besparing zonder PV: 14,4EUR
Kosten (0,11 EUR per kwh)22EUR
Besparing Geldsnor37,6EUR

Uit bovenstaande tabel blijken de gegevens. Omdat mijn huis reeds goed geïsoleerd is, is er relatief weinig verschil, op het eerste gezicht. Maar bedenk het volgende: de besparing bij zachte dagen is relatief klein, omdat er maar weinig gestookt wordt. Als er niet gestookt wordt, valt er niets te bezuinigen. Als het kouder is, maar niet te koud (want dan werkt de airco minder efficiënt), valt er meer te bezuinigen. Het stookgedrag van ons huis is als volgt:

Het gasverbruik per gewogen graaddag. Duidelijk te zien is het effect van het stoken met de airco vanaf oktober, in vergelijking met het voorgaande jaar uitsluitend met gas.

Je ziet hierboven duidelijk een lager niveau voor oktober en november, vergeleken met vorig jaar (de grafiek begint in september 2019 t/m november 2020). In de winter zou ons huis normaliter rond de 0,33m3 per graaddag zitten. Met de airco aan zitten we rond de 0,1. Dit is een besparing van 0,23m3 per graaddag. Het gemiddelde is iets lager, omdat er in het voorjaar dagen zijn die dankzij koude nachten gemiddeld wel fris zijn, maar waarbij de opwarming overdag groot genoeg is om de woning warm genoeg te houden en de verwarming dus niet aanhoeft.

JaarGraaddagen
2020 (t/m 23-11)2355
20193097
20183087
20173146
20163279
20153134
20142896
Gemiddeld (excl. 2020)3106,5

De potentiële besparing is dus 3106 * 0,23 (ongeveer). Dat is 714m3 gas per jaar – ofwel ongeveer 500 EUR.
Hiervoor moet natuurlijk flink wat elektra gebruikt worden. Dit is vanwege het warmtepomp principe enigszins afhankelijk van de buitentemperatuur: als het heel koud is, is een warmtepomp (en dus ook een airco) minder efficiënt. Als ik uitga van 270kwh in de maanden nov-dec-jan-feb-maart en 100kwh in oktober en april, dan is de rekensom:
1550kwh * stroomtarief (0,226 EUR per kwh) = 350 EUR.
Besparing: 500-350 EUR = 150 EUR. (exclusief het lagere capaciteitstarief van minder dan 500m3 gas per jaar)
Inlevering op comfort: Geen.

Onze monetaire besparing is groter: we produceren meer elektra (aanzienlijk) dan we zelf verbruiken. Ik kan dus rekenen met de opportunity cost die “terugleververgoeding” is. Die is bij Greenchoice 0.11 EUR per KWh. Die 1550 kwh kost ons dus slechts 170,50 EUR. Dat brengt de besparing op jaarbasis richting de 330 EUR. Hier komt nog 55 EUR bij omdat we dan minder dan 500m3 gas per jaar verbruiken en we dus een lager capaciteitstarief mogen afrekenen.

Besparing op CO2-uitstoot: 714m3 = 1350kg CO2. Uiteraard staat hier 1550kwh elektra tegenover, met gemiddeld 400 gram CO2 uitstoot. Dat is 620kg. Besparing: 1350-620 = 730kg. Deze besparing is met onze PV-panelen gelijk: het verdringingsprincipe is hier geldig. Stroom die ik niet lever, levert een centrale.

Situatie is persoonlijk!

Ieder huis zal zijn eigen karakteristieken hebben. Als je een huis hebt met een groter gasverbruik (gemeten in m3 per graaddag, niet in absolute getallen) is de besparing absoluut groter. Helaas kan ik dat niet uitrekenen of bepalen, maar als je al een airco hebt: gebruik deze om te verwarmen, doe dit voor langere tijd (en consequent) en hou de gegevens bij via mindergas.nl (want dat is makkelijk).

Als de cijfers veranderen, dan volgt vanzelf een update!

Het Experiment: verwarmen met de airco

Hier in Huize Geldsnor leven wij toch wel graag een beetje luxe. Maar zijn we ook best wel zuinig. Wellicht in tegenspraak met elkaar, misschien ook niet. Zo houden wij niet van grasmaaien en moeten we met 2 honden & 2 kinderen wel erg vaak stofzuigen. En omdat we wonen in het Warme Binnenland hebben we in het huis wat vorig jaar volledig verbouwd hebben (en nog het nodige moeten doen) ook airco geïnstalleerd, zowel boven als beneden.

Lees meer